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The correctness of the formulation of the problem of minimizing (maximizing) 
the volume of an elastic structure is discussed under the condition that the 
form of the free component of the boundary of the body is used as the control, 
and the fundamental oscillation frequency together with the clamped compo- 
nent of the boundary are fixed. It is shown that the procedure used by Prager 
yields the necessary and sufficient conditions for the volume of the body to be 
maximum, and the problem of minimum volume has a trivial (zero ) solution 

unless additional constraints are imposed. A special form of these constraints 

is proposed, 
The problem in question was studied by a number of workers. Prager Cl1 pro- 

posed a method of determining the necessary and sufficient conditions for 
the volume of the body to be extremal, for a wide class of self - conjugate 
problems of structure optimization. Armand [2] applied the Prager’s method 
to problems of design of plates of variable thickness ,using the latter parameter 

as a control. Brach [3 I had obtained the necessary conditions for a minimum 
volume of a beam using its thickness as the control. A short exposition of the 

Prager ‘s method follows . 

An optimal body E of volume P is bounded by the surface S=S’U 

S” U SW, where the segment S’ is under external load, segment S” is load-free and 

segment SW is clamped. The segments S’ and Sm are assumed to be fixed, 

and the segment S” may be varied. The body E, introduced for purposes of com- 

parison is bounded by the surface S, = S’ U S,” U SW , and its volume 

v, = v+ v+ - I’_ 

is obtained by adding to the volume V a volume V+ and subtracting a volume V_. 

The functional 
c = min F, dv, (2) 

IL’ s 
v. 

where c is a specified constant, w is the displacement of the points of the body 
and F, is a specified function of w and its derivatives, is defined on all admissible 
bodies E, . 

We require to find among these admissible bodies a body of minimum (or maxi - 
mum > volume. According to the condition ( 2 1 we have 

s FdV = 
s F, dV, 

V V. 
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where the function F is defined in X. Taking into account (2), we can write 

1 F,dV*< 1 FdV,= 

V. 

FdV$ 1 FdV,- i FdV, (4) 

v. v+ V- 

from which, using (3 ) we obtain 

s FdV, - 
s 

FdV_>O 
v+ V, 

Let us set 

F = F, = const on S” 

F = F, - F, in V,; F+ > 0 

F=F,- F- in V_; F_ > 0 

(5) 

(6) 

From (5 ) and (6 > we obtain 

Fo(V+-V-12 5 F+dV++ 1 F_dV_>O 
v+ V- 

and now, using (1) we can conclude that 

Fo(V+- V-)>O 
(7) 

We note that the Prager’s method cannot be used when the clamped part of the 
boundary is used as the control. Indeed, although the Prager ‘s method does not make 
explicit .use of the conditions imposed on the free and clamped parts of the boundary, 

the inequality (4 1 holds only for the functions 1u which satisfy the same basic boun - 

dary conditions in I: *, as in ZZ . For this reason the method cannot be used when the 

surface on which the basic boundary conditions are specified is varied. 
Prager has proposed ,in particular, that the method given above be used to deter - 

mine a body of extremal volume with a specified fundamental fequency 0. In this 

case F is equal to the density of the Lagrangian of the body 

F = G - oaH (8) 

where G and H denote the densities of the potential and kinetic energy, and the 

loaded surface segment S’ is absent. 
The same approach was used later by Armand [2] in the problem of oscillationsof 

a plate of minimum volume. He found that the volume became zero unless a hypo- 
thesis of non-structural mass was introduced. Brach 13 I has also found that the volume 
of a beam becomes zero in the absence of concentrated masses lying on it. 

The problem of optimal design of freely oscillating bodies exhibits a number of 

features distinguishing it from the static problems. Firstly, the problem is homogeneous 

and the values of F and F. can be determined to within an arbitrary positive 
multiplier, This multiplier can be regarded as a coefficient of proportionality connec- 
ting the state variables and the Lagrangian multipliers if the problem is solved by the 
usual variational methods. Secondly *in contrast with the static problems, the quantity 

F can assume values of different signs. 
We shall show that the Prager’s method yields the necessary and sufficient condi - 

tions for the maximum volume of the body when the fundamental frequency is fixed. 
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Indeed, the relation (2) is equivalent to the Rayleigh’s variational principle 

c=min (G-dH)dVsO 
s 

(9) 
w v 

According to (6) the boundary value F, of the function F = G - 02H should 
be minimal in the optimal body Z . From (9) it follows that 

and the equality is attained only when F E 0 over the whole volume, which corres- 
ponds to the stress-free state. Excluding this case from our discussion, we rewrite (10 ) 

in the form 
F,=G-aaH< (11) 

The inequality (7) enables us to conclude that V > V,, i. e. the maximum vol- 
ume structure corresponds to conditions (6 > . 

The condition of optimality (11) implies, in particular, that the optimal body can - 
not have a connected component of the boundary consisting of a clamped and a free 
surface. Indeed, from (11) and the positiveness of G it follows that 

H>- F,f co=>0 (12) 

on the whole surface S”. But the kinetic energy H is a continuous function of the 
surface element and the condition H = 0 holds on S”’ , therefore the condition 

(12) cannot hold near S”‘. 
A body satisfying the Prager conditions “envelops” the clamped boundary and is 

bounded externally by the free surface. 

E x a m p 1 e . Let the clamped component of the boundary be a sphere. Then, as 
we can verify directly, the spherical layer satisfies the conditions (6 ) C4 I and does there- 
fore represent a body of maximum volume with a specified natural frequency and a 

clamped surface. 
Simple physical considerations show that there are no solutions of the converse 

problem on a body of minimum volume with a specified natural frequency and a clam- 
ped part of the boundary SW unless additional constraints are imposed. Indeed, bring- 
ing the free segment of the boundary S” infinitely near to the clamped part SW, we 
obtain a body with an arbitrarily large natural frequency of oscillations. Now attaching 
to this body a long, thin flange resting on S” and oscillating like a cantilever, we 

can reduce the natural frequency of the body (which does not exceed the natural fre- 
quency of the flange ) by as much as we like and, in particular, make it equal to the 
prescribed frequency. The volume of the flange as well as the volume of the whole 
body can be made as small as we like, and this agrees with the results of [2,3 1. 

The authors of [2,3 ] have succeeded in obtaining a nontrivial solution of the pro- 
blem of minimal volume, using the hypothesis of non-structural mass [2] or by intro- 
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ducing concentrated masses C3 I. We shall show that under the general formulation of 
the problem introduction of such an assumption will also enable us to obtain a non - 
trivial solution. 

Let the body B have a part Z, not subject to variation and consisting of a 
material with zero potential energy of deformation (e. g. a perfectly rigid body 1, and 
a nonzero kinetic energy, Denoting the volume of the remaining X by Ve, we can 
write the equation (Q) in the form 

0 = min 
iu {S (G - oW)dVzr- s cow dV, 

> 
VII VT3 

or 

s (G - COW) dV, = cl+ s iTdV,> 0 

v, VT& 

In this case the inequality 

Fo > 9 (13 1 

leading to the condition of minimal volume no longer contradicts the variational 
Rayleigh principle, and the Prager conditions (6 ) together with the inecprality (13 > yield 
the necessary and sufficient conditions for the minimal volume of the body. 

Introduction of the hypothesis of non-structural mass makes possible the regular - 
ization of the problems in which the Lagrangian is homog~eous with respect to the 
control, e. g. the problems discussed in 12, 3 1. However, the hypothesis cannot reg - 
ularize such problems as the problem of distribution of thickness in a Kirchhoff plateof 
minimum volume with a fixed fundamental characteristic frequency where the absence 
of the optimal solution is related, as shown in [5] t to the fact that all displacements 
have the same direction. 
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